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Abstract
It is a challenging task to distinguish between numerous species of flowers due to their visu-
ally similarities and variations of the pose and structure. Thanks to properly modeling of
the local feature interactions, bilinear CNN has succeeded in classifying of many non-rigid
fine-grained species including flowers. However, bilinear CNN only computes the feature
in a straightforward way without exploring the interactions between features from multiple
layers in the network. In this paper,we present a novel Bilinear Pyramid Network (BPN)for
flower categorization. Instead of passing through the network and directly feeding the final
classifier, features from a convolutional layer are resized and multiplied with that from the
former layer, which alternates multiple times to generates prediction vectors using the fea-
tures from distinct layers. These features encoded from the feature pyramid spontaneously
carry multi-level semantic cues, which yields stronger discriminative powers than single-
layer features. Experiments show that the proposed network obtains superior classification
results on the challenging dataset of flowers.

Keywords Fine-grained image classification · Fine-grained visual categorization
(FGVC) · Image classification · Convolutional neural network (CNN) · Deep learning

1 Introduction

Fine-grained visual categorization refers to differentiating species from the same basic-level
categories (e.g., species of dogs and models of cars) [4–7, 10, 12, 19, 30, 33]. Different
from basic-level categories, fine-grained species present extremely high visual similarities
and large pose variations, and often belong to considerably numerous species. As a result,
classifying fine-grained species with large intra-class variations and small between-class
differences is ambitious.
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Researches on cognitive science indicate that basic-level categories are distinguished
by their differences of the body parts while fine-grained species are differentiated via the
different properties of the same parts [24]. Follow this hypothesis,many part-based methods
have gained their success in classifying rigid objects like birds, dogs and cars. In [15], a
HSnet is proposed in which the classification problem is formulated as a sequential search
for informative parts over a deep feature map produced by a CNN. In [29],part matching is
introduced in traditional Bag-of-Words pipeline to inference discriminative foregrounds of
the objects and eliminate background noises. In [32],multiscale part proposals are generated
from object proposals, and then filtered to form the image representations. However, these
methods fail in flower categorization due to the ambiguous structures of flowers.

Existing methods for flower species categorization are mostly devoted to precise detec-
tion of the foregrounds using attention mechanisms and designing discriminative features
for the for flowers [2, 13, 21]. Chai et al. segment flowers out by performing within-image
and across-image appearance propagation consecutively rather than jointly [3]. Pang et al.
introduce the eye shifting of human beings into the feature encoding procedure when clas-
sifying flowers [22]. Britto et al. show that a combination of carefully designed features,
including shape, color and texture descriptors, is essential for flower categorization [18].

Although these methods use attention mechanisms to explore the structures of flowers
and fuse multiple feature to enhance the discrimination, they fail to get satisfactory results
for flower categorization. Problems of these methods are mainly two-fold:1)hand-craft fea-
tures are incapable of distinguishing subtle differences between visually similar species, 2)
the feature extraction and final classification are performed independently, which prevents
the global optimization of the classification model, and 3) only high-level visual cues are
used in the prediction, ignoring the importance of low-level visual cues.

In this paper, we present a novel Bilinear Pyramid Network (BPN) for flower species
categorization. The proposed method is built on the prevalent CNN architecture which
yields superior performance via discriminative deep descriptors and end-to-end learning.
Moreover, instead of directly passing through the network and feeding the final classifier,
features from a convolutional layer are fused with that from the former layer. These features
encoded from the feature pyramid spontaneously carry multi-level semantic cues, which
introduces additional robustness to the variation of the pose and scale and outperforms
single-layer features in discrimination for categorization. We conduct extensive validation
on the bench-marked dataset to show the effectiveness of the proposed method.

2 Related work

2.1 Deep convolutional neural networks

Deep Convolutional Neural Networks (DCNN) has significantly boosted the performance
of supervised and semi-supervised classification [9, 14, 25]. Fu et al. propose a effective
graph convolutional network which preserves the local geometry of samples via hypergraph
p-Laplacian [8]. Lin et al. develop the feature pyramid network (FPN) building high-level
semantic feature maps at all scales, which shows significant improvement in object detec-
tion [16]. Inspired by the feature pyramid, Yu et al. present the spatial pyramid-enhanced
NetVLAD for place recognition, which is shown to be an optimal feature encoding method
built on DCNN [31]. Unlike the FPN based on conventional architectures, the proposed
BPN is built on a bilinear CNN. Moreover, we give prediction fused by all scales of the
feature pyramid instead of predicting at each scales.
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2.2 Attention based method

Some recent deep methods for FGVC also adopt attention mechanisms, for example, the
methods based on attention proposal sub-network (APN) and bilinear CNN [17]. Instead
of explicitly detecting or discovering body parts of the fine-grained species, bilinear CNN
investigates local feature interactions by multiplying feature maps generated by two CNNs.
These two CNNs share the same architecture while capture distinct patterns of an input
image. Thus, the outer product of their features explicitly depicts the feature co-occurrence
in each location without any precondition of body parts. However,bilinear CNN only takes
advantages of features from the last layer,ignoring cues from the other layers. As a compar-
ison, the proposed BPN encodes information from the feature pyramid and spontaneously
incorporates cues from multiple layers, generating more discriminative features for flower
categorization.

3 Proposed model

When passing an image through a CNN, feature maps keep decreasing in their sizes, form-
ing a feature pyramid [16]. Feature maps computed by the deeper convolutional layers have
smaller size but carry more semantic cues. Most of the existing methods only adapt fea-
ture maps from the last layer for classification, while the proposed BPN utilizes the feature
pyramid: first up-samples the feature maps from the deeper layer, and then multiplies them
with the feature map from the adjacent layer. This procedure is repeated multiple times
from deeper layers to upper layers, collecting semantic cues specifying different scales and
visual patterns,which introduces additional robustness to the variation of the pose and scale
of flowers and generates discriminative local features .

It is shown that the two CNNs of the bilinear model actually play different roles: one
detects object parts (salient patterns) while the other extracts local features of the detected
parts. Thus, the bilinear model incorporates feature detection and feature extraction in an
unify framework,with each detector couples with an extractor. CNNs in the BPN are similar
to that of the bilinear network, but differs in the scale: the BPN assembles features from
multiple layers and thus utilizes multi-scale detectors and feature extractors. The proposed
network is illustrated in Fig. 1.

Feature
Pyramid

Convolution
Bilinear Pooling
Up-sampling

Fig. 1 The bilinear pooling and up-sampling architecture of the proposed Bilinear Pyramid Network.
Multi- level semantic cues from distinct layers are incorporated from the feature pyramid, highlighting
multi-scale visual patterns and thus benefiting flower categorization

Predict
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Specifically, we detail the last three convolutional layers which are used as the feature
pyramid for bilinear pooling in Fig. 2. As is seen, the compared convolutional layers in
a typical VGG-16 network [26] packaged in a cascading way only produce single-scale
convolutional features,which is sensitive to scale and pose variations of flowers (the left net-
work in Fig. 2). We also give examples of the related layers with different configurations in
a 2-level BPN and 3-level BPN which pools features from 2 layers and 3 layers respectively
(the central and right networks in Fig. 2). In contrast to the VGG network, these two BPNs
pool features from multi-layers of the feature pyramid. Besides, the layers of these three
models before conv5 1 share the same configuration,serving as the basic feature extractors.
Notice that the feature maps are resized by the fully-connected layer bilinear proj before
element-wise production via the eltwise layer.

4 Formulation

Let x = [x1 ,x2 , ...,xc]T denotes a feature with c channels at a spatial location of the feature
map from a convolutional layer. Then the bilinear model is given by:

bi = xtM ix (1)

Fig. 2 Comparison of the last three convolutional layers in the original VGG network, 2-level BPN and
3- level BPN. The bilinear pooling of multi-layer features improves the robustness to pose and scale
variations of flowers
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where bi is the output of the bilinear model specifying location i .M = [M1,M2 , ...,Mj] ∈

Rc ×c ×j , a set of learnable matrices, are used for projection. As shown in [23], a projection
matrix Mi can be further factorized into two low-rank vectors Di and Qt

i. Thus, formulation
(1) can be updated using the vectors, and rewritten as the outputs of the bilinear model
specifying all the locations:

b = Ct(Dtx ∗ Qtx) (2)

where C denotes the classification matrix, D and Q are two projection matrices consisted
by low-rank vectors,∗ is the Hadamard product. Different to the traditional bilinear model,
we pool the features from two adjacent layers:

b = Ct(DtS(x) ∗ Qty) (3)

where S(x) represents the up-sampled feature of x, and y is the feature from the adjacent
convolutional layer.

Let B( ·) denotes the above bilinear pooling operation be-tween features from two adja-
cent layers in the network, xb denotes the feature produced by the basic feature extractor.
Then xi , the bilinear descriptor of the i-th convolutional layer after basic feature extraction
module can be obtained by:

xi = B(H i(xb))
H1(·)= F(·)

(4)

Hi(·)= F(Hi − 1 (·))

where F( ·) is the convolutional operation in the network, and Hi(·) is the combination of i
convolutions.

In the experiments, x2 encoded from a 3-layer feature pyramid is used for the final clas-
sification. Encoding features from more layers is not encouraged,as it will introduce heavy
computational costs and hurt the discriminative power of the descriptor.

5 Experiments

The proposed BPN is built on the VGG-16 architecture [26], in which we fix all the convo-
lutional layers and fine-tune the fully-connected layers using the Oxford 102 category and
17 category flower datasets [20] (Fig. 3). We first introduce up-sampling layers and bilinear
pooling layers to the last three convolutional layers conv5 1, conv5 2and conv5 3, obtain-
ing the bilinear product of their features. Then the product is fed through the fully connected
layers fc 7and fc 8, where fc 8 is the predefined VGG-16 layer and fc 7 is newly added
for enhancing the non-linear property of the network. All the images are resized to 224*224
and randomly cropped to 192*192 before being fed into the network. Mirror flipping is
adopted to double the training samples. The training process follows the standard stochastic
gradient descent (SGD) with a learning rate of 0.01, and will be terminated when reach the
maximum iteration of 100000. The basic feature extractor (the layer conv5 1 and its former
layers) generates a feature with 512 channels, which are further processed by two convo-
lutional layers to obtain multi-scale extensions. Then these features specifying 3 scales are
projected to have 8192 channels before element-wise multiplication. Finally, the fused fea-
ture is projected to vector twice, reducing its dimension from 1024 to the number of flower
species.
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We train the BPN using a desktop with a Intel i7 CUP (3.5GHZ)and a 1080-ti GPU,and
the architecture is implemented by Caffe toolkit. The network converged in 630 minutes
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Fig. 3 Some samples in the Oxford 102 category and 17 category flower datasets which present
significant variations of appearance and pose. Samples belong to the same species are listed in one
column, which highlights large intra-class dissimilarities of the species

after 10 epochs of training. Finally, the trained network could classify 23 frames of images
per second. Table 1 lists the training time and computational performance of the proposed
BPN.

To explicitly show the benefits of the proposed bilinear concatenating of the feature
pyramid, we investigate the performance of distinct concatenations using the features from
different layers (see Table 2). When using conv5 3 exclusively, the BPN degenerates to
the VGG-16 networks which achieves top-1 precision and top-5 precision of 92.1 % and
98.5 % respectively. The top-1 and top-5 accuracy boost to 93.5 % and 99.02 % after apply-
ing bilinear pooling on conv5 3 and conv5 2, showing the effectiveness of the proposed
architecture. While the top-5 precision does not hit the top, the top-1 precision further goes
up when three convolutional layers in the feature pyramid are used.

Intuitively,the top-5 prediction using the 3-layer features should present the highest pre-
cision. However, it goes to 98.8 %, versus 99.0 % using the 2-layer features. We argue this
is caused by the differences of the discrimination of these two types of features. The 3-layer
features are more discriminative, which can be seen from the top-1 precision. The 2-layer
features, as a comparison, are less discriminative. Top-5 results of the 2-layer features may
incorporate some possibly correct samples which is not so similar to the query species. On
the other hand, flowers present large intra-class variations, introducing some outliers which
are dissimilar to their ground-truth categories (see Fig. 3). Consequently, when classifying

Table 1 Training time and
computational performance of
the BPN

Training time

630 min

processing

23 f/s

speed
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Feature conv5 3 conv5 3+ conv5 3+
conv5 2 conv5 2+

conv5 1

Top-1 precision (%) 92.16 93.53 94.02
Top-5 precision (%) 98.53 99.02 98.82

an outlier, the 2-layer features may generate a correct prediction whereas the 3-layer fea-
tures may give an incorrect prediction. Notice that we only pool the last three layers of the
feature pyramid. Pooling more layers will introduce numerous parameters brought by the
fully-connected layers, which is a disaster for network training .

We compare the proposed BPN with other mainstream methods on 102 category dataset
in Table 3. The first six methods are traditional methods using hand-craft features, most of
which follow the pipeline of Bag-of-Words (BOW). A BOW-based method first samples
features across the training set,and obtains a set of visual words by off-line clustering using
the sampled features. Then,all the image instances are encoded by the visual words to form
the final descriptors of the instances. Distinct methods only differ in the way they design
and encode the features or the application of different classifiers. Nilsback and Zisserman
[21] combine features specifying shape, texture and color, developing a kernel learning
method for flower categorization. Pang et al. [22] introduce a saliency-based method which
encodes the attention shifts of human beings into the features. However, due to the absence
of jointly optimization of the feature learning and classification, these traditional methods
fundamentally underperform those based on deep learning.

VGG-16 network [26], our baseline model, achieves 92 % accuracy in top-1 precision.
This model becomes an ideal feature extractor after being trained on the large-scale Ima-
geNet dataset. The original bilinear network yields a slightly worse accuracy of 91 %,which
may be caused by its training strategy. Empirically, architectures fine-tuned on large scale
dataset perform better on feature extraction due to the abundance of training data. However,
the bilinear network can’t adopt the fine-tuned layers as its feature extractors. The network
encourages its twin feature extractors to be trained with different weights, and the training
can only be done on the target dataset. As a result, the trained feature extractors might be

Table 3 Comparison of 102

category flower categorization Method Top-1 precision (%)

Nilsback and Zisserman [21] 72.8
Kanan and Cottrell [13] 75.2
Angelova et al. [2] 76.9
Chai et al. [3] 80.0
Britto et al. [18] 80.8
Pang et al. [22] 82.6
Bilinear Network [17] 91.3
Simonyan and Zisserman [26] 92.2
Gogul et al. [11] 93.4
Xia et al. [28] 94.0
Ours 94.2

Table 2 Comparison of the
BPN features trained on 102
category dataset
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Table 4 Comparison of 17

category flower categorization Method Top-1 precision (%)

Varma and Ray [27] 82.6
Nilsback and Zisserman [21] 88.3
Angelova and Zhu [1] 85.0
Zou and Nagy [34] 89.0
Chai et al. [3] 90.4
Xia et al. [28] 95.0
Britto et al. [18] 95.0
Bilinear Network [17] 98.8
Ours 99.1

suboptimal if the target dataset is small-scale. Similar to our method,Gogul et al. also build
their recognition system on a deep neural network, using a transfer learning strategy [11].
Xia et al. introduce the Inception-v3 module in flower classification and obtain satisfied
accuracy on 102 category dataset [28]. However, they fail to further promote the perfor-
mance on the smaller 17 category dataset due to their intricate architecture which relies on
numerous training data. The proposed BPN powered by a simple VGG-16 feature extrac-
tion network achieves superior results when compared with more complicated networks,
showing the effectiveness of bilinear pooling of the multi-layer feature pyramid and the sig-
nificance of exploring semantic cues with distinct scales. Generally,methods based on deep
learning architectures obtain better results on flower categorization.

Table 4 compares the categorization results of the 17 category dataset. The number of
category in this dataset is considerably less than that of the 102 category dataset, which

Fig. 4 Confusion matrix of 17-category categorization obtained by the proposed BPN. Most of the
samples of flowers are correctly classified
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ColtsFoot Dandelion

Fig. 5 Confusing species of flowers in 17 category dataset, which share similar color and structures.
The proposed BPN fails in distinguishing few samples of these species

lead to higher accuracy for all the methods. BPN doesn’t win the bilinear network with
large margin because the small-scale dataset is easily saturated. Similar to the categoriza-
tion on 102 category dataset, these two methods based on deep network achieve the best
results. Although it is hard to completely explore the discriminative power of distinct meth-
ods using this dataset quantitatively, some qualitative analysis can be made. In Fig. 4, we
illustrate the confusion matrix specifying the classification results of all 17 categories in
the dataset. Categories with brighter colors in the energy map are with higher accuracy. It
is clear that the proposed method achieves satisfactory results on most of the categories
(energies of the categories concentrate in the diagonal of the matrix),except for two species
of the flowers: ColtsFoot and Dandelion. The confusion matrix indicates that some sam-
ples of ColtsFoot are classified to Dandelion while some of Dandelion are recognized as
ColtsFoot (see Fig. 5). These two species of flowers share similar delicate long-strip petals.
Their difference only lies in the stamen. As a result,it can be confused to differentiate some
over-exposure and low-resolution samples with ambiguous details.

6 Conclusion

In this paper, we present a novel Bilinear Pyramid Network for flower categorization. The
network pools multiple features from distinct layers of the feature pyramid generated by
the convolutional network, which spontaneously incorporates distinct semantic cues of dif-
ferent layers. The bilinear pooling computes the outer product of the multi-layer features
in each spatial location, explicitly depicting the co-occurrence of different visual cues and
thus benefiting the categorization. Experiments conducted on Oxford 102 category and 17
category flower datasets show the proposed BPN is able to differentiate numerous species
of flower with superior accuracy.
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