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Abstract—In this paper, we propose a simplified mesh
deformation method based on the differentiable calculation and
uses the Pytorch3D library of deep learning. There are four
stages, simplification, deformation, subdivision, re-deformation
in this method. The simplification stage transforms the original
target mesh into a simple mesh. The deformation stage uses the
Pytorch3D tool to predict the simple mesh in the simplification
result. The subdivision stage subdivides the resulting mesh of
deformation, and the re-deformation stage uses the subdivision
stage result mesh as the source mesh to predict the original target
mesh. Our experiment shows that the number of iterations is
similar or less in terms of shape and local features after
simplifying the predicted target mesh. Our method is superior to
the direct mesh deformation method in terms of mesh
deformation speed and local mesh characteristics of deformation
and has a better deformation effect.

Keywords-component; 3D deformation; differentiable
calculation; uniform sampling

I. INTRODUCTION

In computer graphics, mesh deformation has always
occupied an important position, and it is a research hotspot in
computer animation and geometric modeling. Currently, many
technologies developed to provide natural-looking
deformation. Mesh deformation refers to a geometric
processing technology that modifies a geometric model's shape
through user editing operations or constraints. It has a wide
range of applications in industrial and artistic design and
computer animation. For example, in 3D animation, the
existing model needs to be deformed to generate keyframes or
interpolated frames between keyframes.

In the early days, free deformation technology [1][2] was
the main mesh deformation technology. Its algorithm was
simple, and it was a point-by-point operation. A large amount
of manual adjustment was required for meshes with rich local
details. In local detail editing, multiresolution mesh editing
technology [3][4][5] overcomes the shortcomings of free
deformation technology, and it could edit in overall control and
local detail. It has two shortcomings, and one is the need to
construct a progressive representation of the geometric model.
The need for semi-regular resampling limits the other. At the

beginning of the 21st century, the mesh deformation
technology in the differential domain [6][7][8][9][10], the
advantage of the algorithm is that it does not need to
decompose the original mesh, and it can maintain the local
details like the grid-like multiresolution technology. The
disadvantage is that the mesh deformation is only suitable for
local deformation, limiting the overall mesh deformation. The
early SSD technology [11] is simple and efficient. But its
disadvantage that it requires professional manual pre-operation
in the early stage. Therefore, Xu et al. proposed an improved
SSD [12], which combines SSD with differential domain
coordinates and means skeleton coordinates to maintain local
geometric features and skeleton features. The algorithm can be
operated simpler than SSD and can generate real visual effects.
In mesh deformation, the average coordinate has been widely
used in shape deformation [13]. The average coordinate can
represent a point in the star polygon's kernel as a convex
combination of vertices. It can use to calculate the good
parameterization of the surface representing the triangle mesh.
Sha et al. proposed a 3D mesh deformation technology based
on average coordinates [14]. To reduce the amount of
calculation, the method proposed by Sha reduces the number of
vertices involved in the deformation. First, using an improved
CPM algorithm to construct a simplified mesh, editing the
simplified mesh through the mesh detail representation, which
bases on the mean coordinates, and adding a series of details to
the deformed simplified mesh to make the mesh deform
natural.

In recent years, the center of gravity coordinates' idea
extended to arbitrary polygons and high-dimensional
polyhedrons in the plane. That produced new solutions for grid
parameterization and grid deformation applications. Krauth et
al. proposed an interactive modeling framework for 3D shape
and texture mapping [15], which combined the idea of
geometric brushes based on differential deformation, and it
achieves local scaling. The disadvantage is not considering the
gradient field changes. Chen et al. proposed skeleton-driven
surface deformation to get on real-time role animation [16].
The means is by constructing a cubic unit grid, which grid
contains the input surface mesh, and automatically transmitting
the weight of the smooth skin of the bone is to drive the surface
to deform. The disadvantage is that it can only be positive
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numbers weighted calculation. Manson et al. proposed Gordon-
Wixom coordinates [17], which introduces a new structure of
the arbitrarily closed center of gravity coordinates in two
dimensions. It uses the boundary curve distance tangent to
define a positive and smooth weight function. But its
disadvantage is that it uses polygons closed solution that can
only approximate the smooth boundary. Sun et al. proposed a
moving grid deformation method based on the center of gravity
coordinates [18]. To calculate the displacement of the grid
point, it according to the displacement of the center of gravity
coordinates interpolating the boundary point. So it can
calculate the center of gravity coordinate of the grid point that
needs to move. The disadvantage is that the calculation amount
is relatively large. Xian et al. use a full motion method to
generate a thick cage surrounding the mesh model [19]. The
automatically generated coarse boundary can maintain the
topological structure and the original mesh model's main
geometric characteristics. It is convenient to perform operations
such as deformation, subdivision, and fusion. But the
disadvantage is that it has higher requirements for the original
mesh. Du et al. proposed an approximate rigid deformation
algorithm for volume map control [20]. The means use the
approximate rigidity of the volume map to constrain the
deformation volume, and it overcomes the unreasonable
volume change in the traditional deformation process. But the
disadvantage is that the algorithm requires multiple iterations,
and the parallel calculation is slow. Zhang et al. proposed a
triangular mesh deformation method based on the generalized
center of gravity coordinates [21]. It makes the original model
enclosed in the control grid by operating the control grid's
deformation to drive the deformation of the original model,
which can generate a uniform control grid. The disadvantage is
that no considering the simplification and smoothing of the
model. Wu et al. proposed a Poisson grid editing algorithm
combining the center of gravity coordinates [48]. First of all,
determine the grid model's enclosing grid to be deformed, then
it generates the control grid with the center of gravity
coordinates determined by the enclosing grid. Secondly,
arbitrarily manipulate the control grid, map the information
corresponding to the center of gravity's change coordinate to
the gradient field change of the grid model. Finally,
reconstructing the grid by solving the coefficient matrix of
Poisson's equation. Then the deformed model is obtained. This
algorithm overcomes the defect of the traditional Poisson mesh
deformation algorithm. And it effectively retains the detailed
characteristics of the model deformation.

In the past ten years, deep learning has greatly improved AI
systems' ability to process 2D image data. Now, we can
classify objects [22][23][24][25][47] and scenes [26][27] as
well as target detection [28], semantic [29] and instance [30].
As well as the construction of high-performance system
posture estimation [31]. MADNet [46] is a dense and
lightweight network. It can realize multi-scale feature
expression and feature-related learning. These systems can run
on complex image data and deploy in actual environments.
Although these methods are successful, they have a common
shortcoming: they deal with 2D snapshots and ignore the real
3D nature of the world. Thus, we input a single RGB image to
predict the 3D object grid. According to [32], we can use a
two-view training setting: each object image in the mini-batch

processing includes its corresponding view under a random
known transformation. In addition, some 3D reconstruction
methods [33][34][35][36][37] have also produced good results.
Inspired by [38], all models take a single image as input and
directly predict the 3D object grid in camera coordinates.

Now the mesh deformation method uses a very complex
model to achieve user-specified deformation, leading to an
unstable deformation effect. Gao proposed a sparse mixing
method [39]. This method can automatically select a small
number of deformations. To approach the required
deformation. But Wang proposed a deep learning framework
[40]. It is an end-to-end depth learning framework for
generating 3D shapes from monochromatic images. Using
perceptual features extracted from input images, then generate
the correct geometric shape. A strategy from coarse to fine is
adopted to ensure stable deformation, and various losses related
to the mesh/surface are defined. It ensures a visually attractive
and physically accurate 3D geometric shape. The shape grid
does not need to rely on voxels, point clouds, or other more
information-rich data. Then Gkioxari combined two areas of
progress: synthetic benchmarks and isolated targets. Also, they
improved Mask R-CNN [30] and added grid prediction
branches. They then proposed a Mesh R-CNN model [38],
which can generate a 3D object and a complete three-
dimensional triangular mesh of the 3D object. The generated
triangular mesh keeps similar features to the 3D object.

There are many ways to simplify the grid. Among them,
garland [41] and others proposed the quadratic error metrics
(QEM). This method uses edge collapse and the square of the
distance from a point to plane as the error measure. When
QEM calculates, choose the edge with the smallest folding
cost, shrink the pair of vertices in the mesh with the least cost
of edge folding operations (that is, two points shrunk to one
point), simplify the model step by step by continuous iteration.
This algorithm simplifies the model step by step by iteration. In
this paper, the simplification method's mesh adopts QEM, and
the speed and quality of mesh simplification are relatively
good.

The improvement of 3D understanding ability will be more
conducive to the machine to better understand the real world.
For example, robots can navigate in complex spaces. It can
recognize occluded objects in 2D environments and even be
used to improve the scene of various 3D-related AR/VR
games. Therefore, the focus of this paper is to introduce 3D
into computer vision. Unlike the mesh mentioned above
deformation, in this paper, the mesh deformation uses the deep
learning library Pytorch3D, which can transform from a 3D
shape into another shape. The initial mesh can be any mesh.
After the mesh subdivides, then obtain the source mesh. The
source mesh was deforming by offsetting the vertices of its
mesh. By randomly and uniformly sampling in the source grid
and the target grid, it can generate the center of gravity
coordinates and achieve grid prediction.

This paper proposes a simplified mesh deformation method
for deep learning. The initial mesh is subdividing by the Loop
method [42] to obtain the source mesh. Simultaneously, the
simplified mesh of complex target meshes regards as the first
deformation target mesh. By using the pytorch3d library [43],
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the source meshes transformed into the target mesh. Then, the
first deformation result mesh is subdividing by the Loop. The
result of the subdivision is close to the vertex number of the
target mesh before simplification. Finally, the subdivision
result mesh is used as the source mesh to form the original
target mesh. The experimental results show that the
deformation result is better than without simplification. The
results show that mesh deformation's shape and details are
better than fitted to the predicted target mesh.

II. ALGORITHM OVERVIEW

A. Loop subdivision method
The subdivision method used in this experiment is the Loop

subdivision [42]. Loop subdivision is a classic triangular mesh
subdivision algorithm. It was proposed by Loop of the
University of Utah in 1987 in a master's thesis based on a
triangular mesh. The subdivision mode uses a 1-4 triangle face
splitting method, only generates new edge points and new
vertex calculations. And then connects through topology rules,
subdivision generates an approximate triangle mesh.

Set the two vertices of the inner side as ( v0 , v1 ), the v2 and

v3 are the two vertices of two triangles, then the vertex
calculations are as follows:

E-vertex: the two triangular faces sharing this side are
(v0 , v1 , v2 ) and ( v0 , v1 , v3 ), then the calculation of the E vertex
is shown in (1).

3 1
VE = (v0 + v1 ) + (v2 + v3 ) (1)

8 8

V-vertex: If the neighboring points of the inner vertex V are
v0 , v1 , … vn −1 , when n=|V|E, the calculation of
the corresponding V-vertex is (2).

n−1

VV = (1− nβn)v+ βn Vi
i = 0

That is the weighted sum of the vertex itself and all its
neighboring vertices, its weight is the value of 1 − nβn , and
the neighbor weight is (3).

1 5 3 1 2π 2
(3)

16 n 8n

E-vertices VE on boundary edges ( v0 , v1 ) is (4). The two
adjacent vertices of the boundary vertex V on the boundary are
(v0 ,v1 ), then the V-vertex is (5).

VE = (v0 +v1)

1 3
VV =

8
(v0 + v1 )+ 4

V

B. Simplified mesh deformation method
The existing grid processing methods were proposed by

Kato [44] and Liu [45]. But there are two disadvantages to the
existing methods. One is either batch not supported;the other is
to assume that the mesh in a batch has the same number of
vertices and faces. Only CUDA implementations were
provided in the existing project, so they cannot use without a
GPU. Inspired by Mesh R-CNN [38], Facebook created
Pytorch3d [43]. Pytorch3D provides a set of commonly used
3D operators and fast and differentiable loss functions for 3D
data. The Meshes format created by it can simplify the
complexity of batch processing of 3D models. It can use for
batch processing of heterogeneous mesh model data structures.
Pytorch3d can handle a different number of vertices and faces,
and it also supports GPU. That greatly simplifies the research
of 3D mesh deep learning.

In order to save storage space before predicting the target
grid, this paper simplifies the target grid. In the process of
prediction, the number of vertices of the grid does not change.
Besides, in order to speed up the deformation, the neural
network optimizer SGD is used. The grid predictor used in this
paper is similar to the grid predictor of Mesh R-CNN [38]; the
loss of shape is similar to the loss of a grid. It is challenging to
define the loss of local operations on a triangular grid. This
paper uses a loss function defined on a finite set of points by
sampling a point cloud from the grid's upper surface to
represent a grid. This paper adopts the differentiable network
sampler to sample points evenly from the grid surface—point
cloud from the source grid and point cloud from the target
mesh.

In this paper, the calculation process of mesh loss is as
follows: set two sets of point cloud P, Q and normal vector, let
∧P ,Q = {(p,arg minq || p − q ||) : p ∈ P},(p, q) become a set of data
pair (p, q), where q is the nearest neighbor ofp in Q, and up is
the normal vector of point p, and uq is the normal vector of
point q. The chamfer distance between point cloud P and Q
Lcham (P, Q) is (6):

Lcham (P,Q)=| P |
− 1 || p − q ||2 + | Q |− 1 || q − p ||2

(6)
(p ,q )∈∧P ,Q (q ,p)∈∧Q ,P

The normal distance is (7):

Lnorm (P,Q)= − | P |− 1 | up ⋅ uq |− |Q |− 1 | uq ⋅ up | (7)
(p ,q )∈∧P ,Q (q ,p)∈∧Q ,P

Chamfer and normal distance measure the mismatch position
and normal between two point clouds. However, only
minimizing these two distances will result in mesh degradation.
High-quality mesh prediction requires additional shape
adjusters, so edge loss Ledge (V, E) is (8):

Ledge (V ,E)= (v ,v' )∈E || v− v' ||2

E ⊆ V×V is the edge of the prediction mesh. Besides,
adding Laplace loss, which using it to impose smoothing
constraints. The grid loss of the iteration number is the

(4)

(5)

(2)

(8)

When n=3, β3 =
3 . And when n>3, β =

3 .
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weighted sum of LLaplacian , Lnorm (Pi , Qi ) , Ledge(V, E) , and Laplace
loss.

The experimental steps of the simplified mesh deformation
method are as follows:

Input: initial mesh, target mesh.

Output:deformation results mesh.

Step1. Read in the initial mesh and use the Loop
subdivision to subdivide it and then obtain the first
deformation's source grid.

Step2. Simplifying the target mesh by QEM.

Step3. Use the source grid obtained in step 1 to predicts the
simplified target grid obtained in step 2. Then we can get the
deformed result grid of the first prediction.

Step4. The deformed result grid obtained in Step 3, we use
to subdivided by Loop subdivision. The subdivision result grid
predicts the original target grid to obtain the second deformed
result grid.

III. EXPERIMENT

The existing mesh deformation method only edits the
source mesh and does not change the mesh's essential shape.
For example, Fig. 1 shows the 3D grid deformation method
based on average coordinates [14]. And Fig. 2 shows a Poisson
grid editing algorithm combined with the center of gravity
coordinates [48]. This method uses the Poisson grid editing
method combined with the center of gravity coordinates to
enclose. It was using the grid to determine the center of gravity

(a) Source mesh. (b) Deformation result.

Figure 1. Deformation of the Doraemon model [14].

(a) Source mesh. (b) Deformation result.

Figure 2. Deformation of the bunny model [48].

coordinates to obtain the control grid. Then re-set the effect of
the differential coordinate direction and adjust the direction of
the gradient field whole. Finally, reconstructing the deformed
model.

The above mesh deformation methods are only mesh
editing in the source mesh. The above mesh methods are only
mesh editing in the source mesh. And they were only changing
the local characteristics of the source mesh. In this paper, the
algorithm introduces a deep learning method that aims to
change the source grid's global characteristics. The purpose is
to transform the mesh model into a target mesh.

In the experiment, both the initial grid and the target grid
are files in OBJ format. In the mesh deformation, the initial
mesh's vertices and the target mesh keep consistent. The
experiment compares the deformation result mesh after the
source mesh predicts the target mesh. The simplified mesh
deformation method proposed is to simplify the target mesh to
deformation. Then Respectively predict the target mesh before
and after the simplification. The simplified result of the target
grid is showing in Fig 3. Otherwise, adding the experiment of
directly predicting the original target grid to comparison. They
are, namely, subdividing the source grid into the number of
vertices close to the target grid for direct prediction. In this
paper, the mesh deformation performers twice. And the final
deformation result mesh is much better than the mesh
deformation result of the direct deformation method, especially
in the details. In this paper, the initial grids are dodecahedron
and cube and select the target grids as mouse heads and fish for
the experiment.

IV. ANALYSIS OF EXPERIMENTAL RESULTS

In this paper, to implement the algorithm, the processor
used is Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz and
8GB of memory. And the GPU is NVIDIA Geforce 930M.
The simplified mesh environment is in Meshlab. Pytorch3D
configures under Ubuntu.

It can be seen from Fig. 4 that the initial mesh is in a
regular dodecahedron. In the direct mesh deformation method
and the simplified mesh deformation method, deformation
results are roughly the same as the target mesh. But at the ears,
the direct mesh deformation method is in the deformed ear
during the process, there are missing corners, and the mesh is
too sparse. That is not the case with the simplified mesh
deformation method in this paper. The predicted result is
roughly the same as the target mesh. In the nose, the
deformation result of the direct mesh deformation algorithm is
too rough. However, the deformation results of the simplified
mesh deformation algorithm are dense. And its result is also
closer to the nose of the target mesh. Obviously, in the ear and
nose of the mouse's head, the deformation result of the
simplified mesh deformation method is better than that of the
direct mesh deformation method.
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(a)Original target mesh. (b)Simplified target mesh.

Figure 3. Mesh simplification results of the mouse head model.

(A)Initial mesh. (b)Deformation result of direct deformation method. (c)Deformation result of the algorithm in this paper.

Figure 4. Deformation result of mouse head model. (the initial model is a regular dodecahedron).

(A)Initial mesh. (b)Deformation result of direct deformation method. (c)Deformation result of the algorithm in this paper.

Figure 5. Deformation result of mouse head model. (the initial model is a cube).

(a)Original target mesh. (b)Simplified target mesh

Figure 6. Deformation result of the fish model.

633

Authorized licensed use limited to: Tsinghua University. Downloaded on June 02,2022 at 13:10:51 UTC from IEEE Xplore. Restrictions apply.



(A)Initial mesh. (b)Deformation result of direct deformation method. (c)Deformation result of the algorithm in this paper.

Figure 7. The comparison results of the two algorithms of the fish model.

It can be seen from Fig. 5 that the original mesh is a cube.
The resulting mesh of the direct mesh deformation method
does not fit the target mesh's local features. There is only a
rough outline, there are missing corners at the ears, and the
eyes and nose are not to predict. It appears that the effect of
mesh deformation is extremely poor. However, the simplified
mesh deformation method does not have such problems. It
predicts the ears and nose successfully. It can seem that the
simplified mesh deformation method is better than the direct
mesh deformation method at the mouse's ears and nose. This
kind of problem occurs due to uniform sampling on the source
grid's surface and the target grid during the prediction process.

It can be seen from Fig. 7 that the original mesh is a regular
dodecahedron. As a result of the direct mesh deformation
method, the effect of local feature deformation is not very
good. It's rough. But the fin position fitted by the simplified
mesh deformation algorithm is better. The results are close to
the characteristics of the fin. It can seem that in the fin of fish,
the deformation result of the simplified mesh deformation
method is better than that of the direct mesh deformation
method.

According to the above analysis,even if change the original
model, from the perspective of the local characteristics of the
resulting mesh, the simplified mesh deformation method in this
paper is better than the direct mesh deformation method in
transforming the target mesh.

V. CONCLUSION

This paper proposes a simplified mesh deformation method
based on deep learning—it through four stages, simplification,
deformation, subdivision, re-deformation. The final
deformation effect is better than the direct mesh deformation
method in detail and local features, and it can better fit the
target mesh. In the experiment, using the neural network
optimizer for training, grid deformation speed can be
accelerated. In the future,we will continue to improve the mesh
deformation algorithm. We hope to achieve a better
deformation effect. That has a major role in computer vision,
games, film, television, medicine, virtual reality, etc.
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